@& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

>

BIOSTATISTICS ITE R ATI O N AN D
LIST COLUMNS

Jeff Goldsmith, PhD
Department of Biostatistics

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

Why iterate

« You will frequently encounter problems where you need to the same basic
thing a lot

« The “don’t write the same code more than twice” rule motivates the use of
functions

« The need to do the same thing a lot motivates formal structures for iterating

MAILMAN SCHOOL

@ COLUMBIA
of PUBLIC HEALTH

UNIVERSITY

for loops

e Loops are the easiest place to start
« Loops consist of an output object; a sequence to iterate over; the loop body;

and (optionally) an input object
e It’s often handy to keep track of inputs and outputs using lists, given their

flexibility

d2 COLUMBIA | MAILMAN scHoOL
UNIVERSITY | of PUBLIC HEALTH

for loops

e The basic structure is:

input = list(..)
output = list(..)

for (1 1n 1:n) {

output[[1]] = fCinput[[1]])

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

Loop functions

« The loop process (supply input vector / list; apply a function to each element;
save the result to a vector/ list) is really common

 Forloops can get a little tedious, and a little opaque
— Have to define output object and iteration sequence
— Need to make sure loop body is indexed correctly
— Often unclear on a first glance exactly how inputs are connected to outputs

« Loop functions are a popular way to clean up loops
— We'll focus on purrr: :map()

— Base R has lapply() and similar functions

d2 COLUMBIA | MAILMAN scHoOL
UNIVERSITY | of PUBLIC HEALTH

map

« Goal of map is to clarify the loop process
 The basic structure is

output = map(input, f)

e This produces the same result as the for loop, but emphasizes the input and
function and reduces the amount of overhead
— Doesn’t speed code up (as long as you have well-written loops)
— Benefit comes from clarity

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

map variants

« By default, map takes one input and will return a list

« If you know what kind of output your function will produce, you can use a
specific map variant to help prevent errors and simplify outputs:
— map_dbl
— map_lgl
— map_df

« If you need to iterative over two inputs, you can use map variants to give two
input lists / vectors:
— map2
— map2_dbl
— map2_df

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

Process

| often don’t jump straight to a function definition with a map statement to do
iterative processes

« One workflow | use is
— Write a single example for fixed inputs
— Embed example in a for loop
— Abstract loop body to a function
— Re-write using a map statement

 This helps make each step clear, prevents mistakes, and only adds complexity
when | need it
 Eventually you'll get used to writing functions and mapping directly

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

Lists

« In R, lists provide a way to store collections of arbitrary size and type
— You can mix character vectors, numeric vectors, matrices, summaries...

> list(a = rnorm(10@), b = c("Jeff", "Goldsmith"), ¢ = summary(runif(100)))

$a
[1] -0.45570041 1.07079885 0.23944031 0.61202840 -0.09985825 -0.61119970 ©.11551818 -0.83438686
[9] 1.33986752 0.0606033877

$b
[1] "Jeff" "Goldsmith"
$c
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0179 0.30540 0.47852 0.49379 0.70405 0.98868

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

Data frames

« Data frames, which we’ve used extensively, are a special kind of list
— Each list entry is a vector with the same length
— You can still mix variable classes
— Printed as a table

> data_frame(
+ a = rnorm(4),
+ b =c("my", "name", "is", "jeff"),
+ ¢ = sample(c(TRUE, FALSE), 4, replace = TRUE)
+)
A tibble: 4 x 3
a b C

<dbl> <chr> <lgl>
1 0.9609689 my TRUE
2 0.9383835 name TRUE
3 -2.8595221 is FALSE
4 -0.6573009 jeff FALSE

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

List columns

e Lists can contain almost anything
— A list can even contain a list!

« What if an entry in your list is a list, but it has the same length as the other

entries?
e Could that be a “column” in a data frame?

11

d2 COLUMBIA | MAILMAN scHoOL
UNIVERSITY | of PUBLIC HEALTH

List columns

e Lists can contain almost anything
— A list can even contain a list!

« What if an entry in your list is a list, but it has the same length as the other
entries?
e Could that be a “column” in a data frame?

YES!!

11

MAILMAN SCHOOL
of PUBLIC HEALTH

@ COLUMBIA

UNIVERSITY

List columns

e Lists can contain almost anything
— A list can even contain a list!

« What if an entry in your list is a list, but it has the same length as the other

entries?
e Could that be a “column” in a data frame?

YESINII!

@ COLUMBIA

UNIVERSITY

12

MAILMAN SCHOOL
of PUBLIC HEALTH

Seriously?

List columns turn out to be very useful

Imagine you have an input list in a data frame
You can map a function to each element of that input list, export the output list,
and save it in the same data frame

Keeping everything in one data frame with list columns means there are fewer
things to worry about

d2 COLUMBIA | MAILMAN scHoOL
UNIVERSITY | of PUBLIC HEALTH

But wait — there’s more!!

« Imagine you have granular data nested within large units
— Make a list storing your granular data table
— Add the granular data table list to a data frame containing data on larger
units

 Why stop there??
— You can store more complex R objects, like output from regressions on each
granular data table, in a list
— You can add that list to your data frame

« Keeping everything in one data frame with list columns means there are fewer
things to worry about

13

