
�1

ITERATION AND  
LIST COLUMNS

Jeff Goldsmith, PhD
Department of Biostatistics

�2

• You will frequently encounter problems where you need to the same basic
thing a lot

• The “don’t write the same code more than twice” rule motivates the use of
functions

• The need to do the same thing a lot motivates formal structures for iterating

Why iterate

�3

• Loops are the easiest place to start
• Loops consist of an output object; a sequence to iterate over; the loop body;

and (optionally) an input object
• It’s often handy to keep track of inputs and outputs using lists, given their

flexibility

for loops

�4

• The basic structure is:

input = list(…)
output = list(…)

for (i in 1:n) {

output[[i]] = f(input[[i]])

}

for loops

�5

• The loop process (supply input vector / list; apply a function to each element;
save the result to a vector / list) is really common

• For loops can get a little tedious, and a little opaque
– Have to define output object and iteration sequence
– Need to make sure loop body is indexed correctly
– Often unclear on a first glance exactly how inputs are connected to outputs

• Loop functions are a popular way to clean up loops
– We’ll focus on purrr::map()
– Base R has lapply() and similar functions

Loop functions

�6

• Goal of map is to clarify the loop process

• The basic structure is

 output = map(input, f)

• This produces the same result as the for loop, but emphasizes the input and
function and reduces the amount of overhead
– Doesn’t speed code up (as long as you have well-written loops)
– Benefit comes from clarity

map

�7

• By default, map takes one input and will return a list

• If you know what kind of output your function will produce, you can use a
specific map variant to help prevent errors and simplify outputs:
– map_dbl
– map_lgl
– map_df

• If you need to iterative over two inputs, you can use map variants to give two
input lists / vectors:
– map2
– map2_dbl
– map2_df

map variants

�8

• I often don’t jump straight to a function definition with a map statement to do
iterative processes

• One workflow I use is
– Write a single example for fixed inputs
– Embed example in a for loop
– Abstract loop body to a function
– Re-write using a map statement

• This helps make each step clear, prevents mistakes, and only adds complexity
when I need it

• Eventually you’ll get used to writing functions and mapping directly

Process

�9

Lists
• In R, lists provide a way to store collections of arbitrary size and type
– You can mix character vectors, numeric vectors, matrices, summaries…

�10

Data frames
• Data frames, which we’ve used extensively, are a special kind of list
– Each list entry is a vector with the same length
– You can still mix variable classes
– Printed as a table

�11

List columns
• Lists can contain almost anything
– A list can even contain a list!

• What if an entry in your list is a list, but it has the same length as the other
entries?

• Could that be a “column” in a data frame?

�11

List columns
• Lists can contain almost anything
– A list can even contain a list!

• What if an entry in your list is a list, but it has the same length as the other
entries?

• Could that be a “column” in a data frame?

YES!!

�11

List columns
• Lists can contain almost anything
– A list can even contain a list!

• What if an entry in your list is a list, but it has the same length as the other
entries?

• Could that be a “column” in a data frame?

YES!! !!!!!

�12

Seriously? YES!!!!!!
• List columns turn out to be very useful

• Imagine you have an input list in a data frame
• You can map a function to each element of that input list, export the output list,

and save it in the same data frame

• Keeping everything in one data frame with list columns means there are fewer
things to worry about

�13

But wait – there’s more!!
• Imagine you have granular data nested within large units
– Make a list storing your granular data table
– Add the granular data table list to a data frame containing data on larger

units

• Why stop there??
– You can store more complex R objects, like output from regressions on each

granular data table, in a list
– You can add that list to your data frame

• Keeping everything in one data frame with list columns means there are fewer
things to worry about

